skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "G_Dagher, Gaby"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Retrieval Augmented Generation (RAG) has been a recent improvement in providing recent and accurate data to Large Language Models (LLMs). Although RAG has been successful in reducing hallucinations within LLMs, it remains susceptible to inaccurate and maliciously manipulated data. In this paper, we present Distributed-RAG (D-RAG), a novel blockchain-based framework designed to increase the integrity of the RAG system. D-RAG addresses the risks of malicious data by replacing the RAG’s traditionally centralized database with communities, each consisting of a database and a permissioned blockchain. The communities are based on different subjects, each containing experts in the field who verify data through a privacy-preserving consensus protocol before it is added to the database. A Retrieval Blockchain is also designed to communicate between the multiple communities. The miners on this Retrieval Blockchain are responsible for retrieving documents from the database for each query and ranking them using an LLM. These rankings are agreed upon, and the top ranked documents are provided to the LLM with the query to generate a response. We perform experiments on our proposed D-RAG framework, and our results show that our Retrieval Blockchain is scalable and our privacy-preserving consensus protocol maintains efficiency as community members increase. These results demonstrate that in a real-world application setting D-RAG is scalable in maintaining data integrity. 
    more » « less
    Free, publicly-accessible full text available February 22, 2026